首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4005篇
  免费   168篇
  国内免费   25篇
化学   2674篇
晶体学   26篇
力学   166篇
数学   419篇
物理学   913篇
  2023年   28篇
  2022年   84篇
  2021年   185篇
  2020年   158篇
  2019年   141篇
  2018年   171篇
  2017年   121篇
  2016年   166篇
  2015年   163篇
  2014年   168篇
  2013年   316篇
  2012年   260篇
  2011年   290篇
  2010年   160篇
  2009年   148篇
  2008年   154篇
  2007年   173篇
  2006年   128篇
  2005年   134篇
  2004年   84篇
  2003年   78篇
  2002年   60篇
  2001年   68篇
  2000年   48篇
  1999年   45篇
  1998年   18篇
  1997年   21篇
  1996年   32篇
  1995年   37篇
  1994年   27篇
  1993年   31篇
  1992年   32篇
  1991年   40篇
  1990年   17篇
  1989年   20篇
  1988年   28篇
  1987年   26篇
  1986年   24篇
  1985年   38篇
  1984年   23篇
  1983年   22篇
  1982年   22篇
  1981年   11篇
  1980年   28篇
  1979年   21篇
  1978年   27篇
  1977年   27篇
  1976年   18篇
  1973年   10篇
  1968年   10篇
排序方式: 共有4198条查询结果,搜索用时 15 毫秒
71.
Manganese was added as a promoter to investigate physico-mechanical properties of radiation-vulcanized natural rubber latex (RVNRL) films. RVNRL films were prepared by the addition of Mn with the concentration range 0–30 ppm to natural rubber latex and irradiated with various radiation doses (0–20 kGy). Tensile strength, tear strength, and cross-linking density of the irradiated rubber films increased with increasing the concentration of Mn ions as well as radiation doses. In contrast, elongation at break, permanent set, and swelling ratio of the films were decreased under the same conditions. The concentration of Mn ions and radiation doses were optimized and found to be 20 ppm and 12 kGy, respectively. The maximum tensile and tear strengths of irradiated rubber films were observed as 29.12 MPa and 44.78 N/mm, respectively at the optimum conditions. The mechanical properties of the films increased markedly with the addition of Mn until they attained the highest values of 33.88 MPa and 54.77 N/mm, respectively. These enhancements, which reached approximately 20% at the most favorable conditions, can be explained by the effect of transition metals in view of Fajan’s rules regarding the covalent character of ionic bonds and suggest that the higher the difference in charges between cation and anion, the higher the ability to form distortion or polarization of ions.  相似文献   
72.
The present article describes the synthesis and characterization of bi-component polymer systems based on gelatin films incorporated with 2-hydroxyethyl methacrylate (HEMA) monomer, developed for medical application. Gelatin films were prepared by the addition of HEMA of different concentrations (0–30 wt.%) and irradiated with various radiation doses (0–5 kGy). Tensile strength and tear strength of the irradiated gelatin films were found to increase with increasing HEMA up to 20 wt.% as well as radiation doses (1 kGy) as optimized. The maximum tensile and tear strengths of irradiated gelatin films with HEMA were found to be 79.1 MPa and 83.2 N/mm, respectively, at the optimum conditions, and these values were about double that of a reference film prepared without additives. In addition, morphological analysis was done by scanning electron microscopy (SEM) and showed how HEMA cemented and was covered with gelatin in the blend. Thermomechanical analysis was carried out to investigate the shifting of glass transition temperature (Tg) towards higher temperature due to HEMA addition, and the effect of this film was tested on the human body in order to determine whether it can be applied for medical purposes.  相似文献   
73.
A new electroactive disulfide‐confined aryl diazonium (DSAD) salt was synthesized and used as a linker for biomolecules immobilization to prepare two kinds of immunoassay platforms. DSAD was electrodeposited on ITO electrode surfaces by cyclic voltammetry. Disulfide group of DSAD attached on the surfaces were electrochemically oxidized into thiosulfinate or thiosulfonate groups. For the first work, a detection of rabbit antigen was performed on ITO microelectrodes array by spatially‐selective approach. In the second work, DSAD was deposited on electrochemically reduced graphene oxide‐modified ITO surfaces, which were used as a platform for electrochemical sandwich immunoassay for detecting mouse antigen.  相似文献   
74.
Chiral nematic mesoporous phenol‐formaldehyde resins, which were prepared using cellulose nanocrystals as a template, can be used as a substrate to produce latent photonic images. These resins undergo swelling, which changes their reflected color. By writing on the films with chemical inks, the density of methylol groups in the resin changes, subsequently affecting their degree of swelling and, consequently, their color. Writing on the films gives latent images that are revealed only upon swelling of the films. Using inkjet printing, it is possible to make higher resolution photonic patterns both as text and images that can be visualized by swelling and erased by drying. This novel approach to printing photonic patterns in resin films may be applied to anti‐counterfeit tags, signage, and decorative applications.  相似文献   
75.
A full field solution, based on small deformation, three-dimensional elastic–plastic finite element analysis of the centrally cracked thin disk under mode I loading has been performed. The solution for the stresses under small-scale yielding and lo!cally fully plastic state has been compared with the HRR plane stress solution. At the outside of the 3D zone, within a distance of rσo/J=18, HRR dominance is maintained in the presence of a significant amount of compressive stress along the crack flanks. Ahead of this region, the HRR field overestimate the stresses. These results demonstrate a completely reversed state of stress in the near crack front compared to that in the plane strain case. The combined effect of geometry and finite thickness of the specimen on elastic–plastic crack tip stress field has been explored. To the best of our knowledge, such an attempt in the published literature has not been made yet. For the qualitative assessment of the results some of the field parameters have been compared to the available experimental results of K, gives a fair estimate of the crack opening stress near the crack front at a distance of order 10−2 in. On the basis of this analysis, the Linear Elastic Fracture Mechanics approach has been adopted in analyzing the fatigue crack extension experiments performed in the disk (Part II).  相似文献   
76.
The finite amplitude, free vibrational characteristics of a simple mechanical system consisting of an axisymmetric rigid body supported by a highly elastic tubular shear spring subjected to axial, rotational, and coupled shearing motions are studied. Two classes of elastic tube materials are considered: a compressible material whose shear response is constant, and an incompressible material whose shear response is a quadratic function of the total amount of shear. The class of materials with constant shear response includes the incompressible Mooney-Rivlin material and certain compressible Blatz-Ko, Hadamard, and other general kinds of models. For each material class, the quasi-static elasticity problem is solved to determine the telescopic and gyratory shearing deformation functions needed to evaluate the elastic tube restoring force and torque exerted on the body. For all materials with constant shear response, the differential equations of motion are uncoupled equations typical of simple harmonic oscillators. Hence, exact solutions for the forced vibration of the system can be readily obtained; and for this class, engineering design formulae for the load-deflection relations are discussed and compared with experimental results of others'. For the quadratic material, however, the general motion of the body is characterized by a formidable, coupled system of nonlinear equations. The free, coupled shearing motion for which either the axial or the azimuthal shear deformation may be small is governed by a pair of equations of the Duffing and Hill types. On the other hand, the finite amplitude, pure axial and pure rotational motions of the load are described by the classical, nonlinear Duffing equation alone. A variety of problems are solved exactly for these separate free vibrational modes, and a number of physical results are presented throughout.  相似文献   
77.
Hayat  Tasawar  Khan  Masood 《Nonlinear dynamics》2005,42(4):395-405
The flow of a second-grade fluid past a porous plate subject to either suction or blowing at the plate has been studied. A modified model of second-grade fluid that has shear-dependent viscosity and can predict the normal stress difference is used. The differential equations governing the flow are solved using homotopy analysis method (HAM). Expressions for the velocity have been constructed and discussed with the help of graphs. Analysis of the obtained results showed that the flow is appreciably influenced by the material and normal stress coefficient. Several results of interest are deduced as the particular cases of the presented analysis.  相似文献   
78.
A technique to do step planar extension on polymer melts has been developed using a rectangular channel with lubricated walls and the linear motor of the Rheometrics System Four rheometer. Using this method we probe the stress relaxation of two polymer melts, a linear low density polyethylene (LLDPE) and a highly branched low density polyethylene (IUPAC X), and compare the step planar extensional data to step shear data. Since a step planar deformation is theoretically equivalent to a step shear in a rotating frame of reference, we expect that the nonlinear modulus for step planar extension should be equivalent to that for step shear. Although we find the time dependence of the stress relaxation modulus to be the same in both shear and planar extension, the strain dependence is surprisingly different for the two experiments.  相似文献   
79.
Thin films of Ga10Se80Hg10 have been deposited onto a chemically cleaned Al2O3 substrates by thermal evaporation technique under vacuum. The investigated thin films are irradiated by 60Co γ-rays in the dose range of 50–150 kGy. X-ray diffraction patterns of the investigated thin films confirm the preferred crystallite growth occurs in the tetragonal phase structure. It also shows, the average crystallite size increases after γ-exposure, which indicates the crystallinity of the material increases after γ-irradiation. These results were further supported by surface morphological analysis carried out by scanning electron microscope and atomic force microscope which also shows the crystallinity of the material increases with increasing the γ-irradiation dose. The optical transmission spectra of the thin films at normal incidence were investigated in the spectral range from 190 to 1100 nm. Using the transmission spectra, the optical constants like refractive index (n) and extinction coefficient (k) were calculated based on Swanepoel’s method. The optical band gap (Eg) was also estimated using Tauc’s extrapolation procedure. The optical analysis shows: the value of optical band gap of investigated thin films decreases and the corresponding absorption coefficient increases continuously with increasing dose of γ-irradiation.  相似文献   
80.
Russian Physics Journal - Results of experimental studies of the influence of the optical fiber (OF) temperatures on the pulse duration are presented. Optical radiation was input at different...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号